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This analysis demonstrates theoretically that a lateral bending wave propagating 
along the walls of a two-dimensional channel filled with a viscous incompressible fluid 
will induce a mean flow. In  addition to this ‘pure’ bending wave, another possible 
condition is investigated: that of the superposition of an area contraction wave 
propagating with the same speed as the lateral bending wave. This second condition, 
called complex wave motion, takes into account the slight occlusion which occurs 
naturally at  the amplitude peaks when a finite amplitude bending wave propagates 
along the walls of a container. A perturbation solution is found which satisfies Navier- 
Stokes equations for the case in which wave amplitude/wavelength is ‘ small ’. However 
the wave amplitude is finite, in the sense that it is of the same order as the channel 
width. Under these conditions, the occlusion at  the amplitude peaks is allowed to be 
of the same order as the channel width. For the case of a pure bending wave the 
motion induced by the peristaltis is found to be of second order in the pertui bation 
parameter, whereas in the more realistic case a first-order pumping effect is obtained. 

1. Introduction 
A travelling lateral bending wave imposed on the boundary of a container filled 

with a fluid induces a mean flow. The mechanism responsible for this effect is the same 
for either the classical case of the progressive area contraction-expansion wave or 
the pure lateral bending wave. This mechanism, being an acoustic or nonlinear 
streaming, is produced by the interaction of the convective acceleration terms. 

The mechanisms responsible for peristaltic transport have been analysed only 
recently. One of the first publications was by Burns & Parkes (1  967). Over the ensuing 
five years approximately twenty papers dealt with the subject under various res- 
strictions on the Reynolds number, wavelength and amplitude ratio. Jaffrin & Shapiro 
(1973) present a summary of these papers, organized according to geometry, fluid 
properties and the perturbation parameter. The perturbation parameter generally 
involves some combination of the wave amplitude, wavelength or transverse dimension 
of the container, either the thickness for a two-dimensional channel or the diameter 
for an axisymmetric tube. The results for the oscillating and mean flow components 
in the case of two-dimensional (Fung & Yih 1968) and axisymmetric (Yin & Fung 
1969) geometry are similar. The only difference appears in the shape of the velocity 
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profiles, much as with plane and cylindrical Poiseuille flow. Unfortunately, the analysis 
of a lateral bending wave imposed upon the boundary of a tube does not enjoy the 
luxury of the axisymmetric assumption. For this case a full three-dimensional analysis 
with highly complex boundary conditions is required. An integral control volume 
analysis (Wilson 1976) involving an arbitrary cross-sectional geometry demonstrated 
the same basic pumping phenomenon; consequently, an idealized two-dimensional 
model is employed in this investigation. 

The only investigation found in the literature (Hanin 1968) for a lateral bending 
wave imposed on the walls of a two-dimensional channel concluded that no mean 
flow exists. Hanin’s conditions were more restrictive than those in the present in- 
vestigation in that he additionally considered the wave amplitude to be small com- 
pared with the channel thickness. Furthermore, equations of boundary-layer type 
were solved, further restricting the solution to low values of the reduced frequency, 
defined by (wave amplitude)(frequency)/(axial fluid velocity). In  this analysis, the 
wave amplitude is of the same order as the channel thickness and no restrictions are 
initially placed on the transverse pressure gradient. 

When a lateral bending wave of finite amplitude propagates along the length of a 
tube, two possible conditions arise concerning the cross-sectional geometry. First, the 
cross-sections can be assumed to move as rigid bodies without an accompanying area 
change. This is referred to as a pure bending wave and is treated in the first part of the 
analysis. Secondly, and perhaps more realistically, at the amplitude peaks, where the 
curvature is greatest, there is a tendency for the tube to occlude slightly owing to 
local deformation of the cross-sections. This condition, called complex wave motion, 
is also investigated and a substantial improvement in the pumping efficiency is found. 

2. Formulation of the in-phase wave problem 
The problem under consideration is a two-dimensional channel of uniform thickness 

2d filled with a homogeneous, viscous, incompressible fluid. The walls are flexible, 
allowing the imposition of travelling sinusoidal waves of amplitude a and wavelength 
A. Furthermore, the physical dimensions are restricted such that a / A  = E and 
a / d  = O(1). 

As might be expected from the geometry, shown in figure 1,  a solution in the Car- 
tesian co-ordinate system is rather complicated. Because of this difficulty the problem 
is formulated in the curvilinear co-ordinate system described below. 

Three co-ordinate systems are shown for the model in figure 1.  First, the X, Y ,  Z 
system is fixed in space and the travelling wave is represented in this system by 
H ( X , t ) .  Next, the x, y, z system is ‘attached’ to the wave, i.e. it moves to the right 
with the wave speed c. Thus for this system the centre-line displacement is h(x). 
Finally, the 6, 7, z sysbem is a curvilinear orthogonal system which is fixed with 
respect to the x, y, z system, hence it also moves to the right with the wave speed c. 
In  this ‘natural co-ordinate system ’, constant-7 lines coincide with the physical 
boundaries, at least to second order in terms of the perturbation parameter E. 

The appropriate equations of motion for the fluid are to be formulated and solved 
in the natural co-ordinate system. The initial problem is to  determine a co-ordinate 
transformation from the Cartesian system to the natural system. 
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LH(X,  t ) = - - d + a c ~ ~ h  ( X - c t )  x 
FIGURE 1. Co-ordinate system for pure bending wave. 

2.1. Co-ordinate transformation 
If we define a co-ordinate transformation from the Cartesian to the natural system 
that is conformal, we can take advantage of various properties of analytic functions 
to simplify dramatically the resulting equations. This can be accomplished by con- 
structing the natural co-ordinates from the streamlines and potential lines, which 
automatically satisfy the Cauchy-Riemann conditions. We need first to solve the 
complementary inviscid irrotational problem. This result will be used to construct a 
co-ordinate transformation which provides a convenient system in which to investigate 
the viscous rotational problem. 

Since the potential flow problem is straightforward, only the perturbation solution 
for the potential and stream functions is given: 

@(X, Y, t )  = ac sin (kX - o t )  sinh kYlcosh kd, (2.1) 

Y(X, Y , t )  = ~ ~ ~ ~ ~ ( k X - ~ t ) c o s h k Y / c o s h k d .  (2.2) 

By applying a simple Galilean transformation, we can write the potential lines and 
streamlines in the x, y, z system as 

@(x, y) = - cx + ac sin kx sinh kylcosh kd, 

@(x, 9) = - CY +UC cos kx cash kylcosh kd. 

(2.3) 

(2.4) 

Immediately we can write down the following transformation relations: 

sinh ky 
cosh kd sin kx' 

S(x,y) = x-a- 

cosh ky 
r ( x ,  9) = y-a- cosh kd ''' 

These transformations are first-order accurate as a result of the approximations in 
the boundary conditions used in deriving (2.1 ) and (2.2). The approximation subject 
to alh  = 8 was that a@/aY = aH/at was evaluated a t  the mean boundary displace- 
ment. However, (2.5) and (2.6) can be considered exact for the displacement of the 
centre-line of the channel, and first-order accurate in general. We are interested in a 
solution to the internal flow bounded by parallel planes equidistant on either side of 
this line. It can be shown that in this restricted solution domain the transformations 
are in effect second-order accurate. This result can be seen from the non-dimensional 



148 D. E .  Wilson and R. L. Panton 

transformations (2.22) and (2.23), and is due to  the fact that  we restrict the physical 
problem such that d / h  = O(e). Consequently, we can obtain second-order solutions 
with these transformations and, furthermore, they are conformal. 

2.2. Transformation of the vorticity equation 

For plane two-dimensional flow, the vorticity has only a component in the z direction. 
The resulting equation in the x, y ,  z system is 

DwlDt = VWW, (2.7) 

where w = a2$/az2 + a 2 $ / a y 2 .  (2.8) 

The z co-ordinate is the same in both theCartesian and the natural co-ordinate system, 
and since w is a scalar quantity, it is also identical in both systems. We can thus writ'e 

w(x ,y )  = a ( ~ , r )  = J{a2$/ap+a2$/ar2} = JV$, (2.9) 

where (3.9) takes advantage of the conformal properties of the mapping. Quantities 
with a tilde are functions of the 6, 7, z system and J is the Jacobian of the trans- 
formation. Substituting (3.9) into the vorticity equation, exploiting the fact that  J is 
analytic, which implies V2w = J2v4$  and aJ/az = aJ/ay = dJ(z')/dz',  and adopting 
the notation z' = x + i y  and w = c+ ill, we get after lengthy operations 

Notice that for the identity mapping, J = 1, the right-hand side equals zero, ~ + y ,  
[+ x and the result is the classical stream-function equation in Cartesian co-ordinates. 
The notation v2$ is used to denote div(grad)$ in the c, 71 system. 

2.3. Boundary conditions 

The boundary conditions that must be satisfied by the fluid on the walls are the 
no-slip and impermeability conditions. The approximate no-slip boundary conditions 
on a moving surface can be developed for a flexible but inextensible or flexible but 
extensible surface. Taylor (1951) has given explicitly the boundary conditions for a 
flexible but inextensible plate for small values of a l h .  We shall, however, adopt the 
simpler and perhaps more realistic condition of a flexible but extensible surface with 
a travelling wave, and assume only transverae displacements. This implies that u = 0 
and v = aH/at at  Y = f d + H .  I n  the x, y ,  :: system 'attached' to  the travelling wave, 
the boundary conditions are simply 

u = - c ,  v = O  at  y = + d + h .  (2.11), (2.12) 

I n  the c,r ,  x system these become 

(2.13) 

(2.14) 

Using the Cauchy-Riemann conditions, cX = r2/ and &, = -q2, and noting that 
J 3 [i + [i, these become 

Ja$/aq = - CQ, Ja$/a[ = - ~ 6 .  (2.15), (2.16) 
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Noting from the appendix that fi(C,v) = Jfa$/ar  and i j ( C , ~ )  = - Jja$/aC,  the 
boundary conditions for the two orthogonal velocity components become 

w, 37)Ias = -CCz J - f ,  Z(C, v ) l a s  = CC?, J-4, (2.17), (2.18) 

where the subscript as denotes that the function is t o  be evaluated a t  the surface, 
which is as yet unspecified in this system. Once the variables have been properly 
non-dimensionalized we shall return to  (2.17) and (2.18) to  define these boundary 
conditions in terms of 7. 

2.4. ~ o n - d ~ m e n ~ ~ o n ~ l ~ z a t i o n  

The ultimate solution to  the problem, which is modelled approximately owing to  the 
transformations, depends upon use of the correct non-dimensionalizing process. 
Otherwise, when the perturbation analysis is performed in the conformal plane the 
mathematical model will not conform t o  the physical problem. Therefore it is necessary 
to use different characteristic lengths in two co-ordinate directions. Let h be the 
characteristic length in the y direction and d that  in the 7 direction. This process 
is similar to that for the long-wavelength shallow-water wave solutions given by 
Stoker (1957) and that in an analysis of the long-wave approximation by Zien & 
Ostrach (1970). I n  effect, the scaling stretches the transverse co-ordinate such that 
the solution domain in the conformal plane maintains the proper order when E - +  0. 
Otherwise the boundaries of the physical problem will collapse into a single line when 
mapped into the conformal plane. With these considerations, we introduce the 
following non-dimensional variables and parameters: 

(2.19) J 5 = CIA, 5 = x/h, ?j = r / d ,  i7 = Y/d, 
- 9 = $/cd, U = G/C, ;ii = ijp/cE, t = ct/h, 

01 = 27rd/h, p = a/d ,  E = a / h ,  Re = cd/v. 

Notice that u and .u are non-dimensionalized in a different manner. This scaling, like 
the Re-2 scaling in the boundary-layer equations, satisfies the continuity equation. 

Using these variables, the non-dimensional conformal transformation becomes 

- sinh ap 
5 = x - e  - sin 27E, 

cosh a 

- cosh ay 
cosh a 

7 = g-p- cos 2775. 

(2.20) 

(2.21) 

We can now determine the first-order-accurate inverse transformations by expanding 
sinh 019 and cosh 019 and solving. These become 

x = E+O(E2), y = ~+pc0s2rr5+0(€2) .  (2.22), (2.23) 

The Jacobian can then be written as 

+ O ( 8 ) .  (2.24) 
cosh2 01jj 

cos2mx --I9 4772 ~ ( cosh2a 

By expanding in a Taylor series and noting that a = ~ 2 n / p ,  it can be seen that 
max (sinh ay)  = O ( E ) .  Thus we have the convenient result that J ( z )  = 1 + O(e2). The 
fact that  the Jacobian is equal to  one up t o  second order has important implications 
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in the perturbation procedure and will be exploited several times in the analysis. It 
is also easy to  show that J(w) = 1 + O ( E ~ ) ,  where 

a 
w(2) = g+iq  = 2 - i  - 

cosh kd ‘OS 
(2.25) 

Using these results, the stream-function equation can be written in non-dimensional 

where the modified ‘Laplacian ’ operator is given by 

and 

The boundary conditions can now be written as 

Uljs = - [z J-4, 218s = (PIS) C .  J- t  (2.27), (2.28) 

= & 1 +pcos2nC. Combining this with (2.23) we find that 

2 = - [* J-!I , E = (/I/€) J-4 at ?j = f 1 +e”j[,?j). (2.29), (2.30) 

The functionJ’([, 7 )  is lengthy and is left unspecified since it will not enter the boundary 
conditions up to second order. 

and must be evaluated a t  
the surface is given by 7 = f 1 + 0(e2), and the boundary conditions become 

3. Method of solution of pure bending wave problem 

an asymptotic series as 
Using the long-wavelength approximation, the stream function can be expanded in 

- 
9%, 7, f) = &I(<, 7, l) + $l(C, 7, f) + €2$2(C, 7, f )  + 0 ( E 3 ) .  (3.1) 

Substituting this expansion into (2.26) and following the usual ordering procedure in 
straightforward perturbation problems results in the following equations for the first 
three orders in e: 

a4po/a74 = 0, (3.2) 

(3.4) 

To complete the solution it is necessary to develop the appropriate set of equations 
relating the ‘axial’ pressure gradient to the stream function. This is done by uriting 
the x and y momentum equation in terms of the stream function and using the trans- 
formation relations. The z and y momentum equations are multiplied by 5, and &, 
respectively and then added. The non-dimensional axial pressure gradient is defined 

p a1g2 p a$Fo a3& a& a3p0 ap0 a3p1 a$,as& a& a3po 
Re a74 Re aij2ag2 atar2 a? ayaijn a? aga72 ag a73 ag a73’ 
- - = - - --.. +-+--+-------- 
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Defining the transverse pressure gradient similarly, then expanding P in an asymptotic 
series, the following relations up to second order are obtained: 

All that remains now is to specify the boundary conditions up to  O(e2).  Since E appears 
both implicitly and explicitly, we first expand the boundary conditions about 7 = f 1 
in a Taylor series. Next, expanding U and V in an asymptotic series similar to (3.1), 
the boundary conditions become 

(3.8) at 7 = f 1. I (3.9) 

ii0 + E t ,  + GU, + o ( E 3 )  = - cz J-* 

1-b + Ev, + € 2 ~ ~  + o ( E 3 )  = cG ~ - 4  

By expanding sinh aij and cosh a@ in the expression for J given by (2.24) then using 
the inverse transformation relations given by (2.22) and (2.23), we find that 

J = 1 - e2(( 8n2/,8) ?j cos 277% + 8n2 cos2 2ng - 47r2 sin2 2n5) + O(e3). (3.10) 

Similarly cz and Cp become 

g5 = i - q(4n2/p)  7 cos 2779+ 4+ cos2 2 n ~ }  + 0 ( € 3 ) ,  (3.11) 

l$ = ~2(277/,8) sin 2nC + o(~3). (3.12) 

Substituting these three equations into the right-hand side of (3.8) and (3.9), expanding 
and collecting like powers of E ,  the boundary conditions become 

Uo( f 1) = - 1,  (3.13) 

iil( 1) = 0, gl( f I )  = 2nsin2ng, (3.14) 

g2( f 1) = 2n2sin22ng, z2( 1 )  = 0. (3.15) 

It is interesting that the same equations can be obtained in a much less rigorous 
manner, by referring to figure 1 and writing 

CIas = -ccosB, 61as = csin8, (3.16) 

Go( f 1 )  = 0, 

where B = dh/dx = -aksin kx. Substituting for 8, we then have 

.iiJaS = -ccos(-aksinkx), GIas = csin(-aksinkx). 

Non-dimensionalizing and expanding the sines and cosines in Taylor series gives 

;il( 

;ii( 

1 )  = - 1 - s2(2n sin2 2nc) + 0 ( 6 4 ) ,  

I )  = ~(277 sin 2770 + o(~3). 

Then by expanding ii and V in an asymptotic series in e, the same boundary conditions 
are obtained. Although less rigorous, this approach provides more physical insight as 
to the origin of the terms in the perturbation boundary conditions. 
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The system now contains differential equations in terms of the stream function 
and boundary conditions in terms of velocity components. This is a somewhat unusual 
formulation; however, the boundary conditions are more compact and physically 
instructive when specified in terms of velocities €or a natural orthogonal curvilinear 
co-ordinate system such as the [, q, z system. We shall thus need a relation between 
the velocity components and the stream function. By using (A 1)  and (A2) in the 
appendix and expanding b0t.h the stream function and the velocity components as 
before, we obtain 

u, = apo/a7j, go = -apo/ac, (3.17) 

E~ = ap,/ar, gl = - ap,/ag, (3.18) 

5, = ap,/ar + ga$,/ar, (3.19) g2 = - ap2/ac- gapo/ag, 
where g = 2n2 sin2 2nE - 4n2 cos2 2nE - (4n2/P) 7j cos 2n5. 

The second terms in the equations for Uz and 'u, both come from the interaction of the 
curvature and the uniform translation at  velocity c of the 5, q, z system even when no 
basic flow from an imposed pressure gradient is present. At first the expressions for U2 
and V, appear not to satisfy continuity up to O(c2),  however Chis is not the case. In the 
natural orthogonal co-ordinate system continuity is expressed by 

Using ii and 6 from the appendix, we see that continuity is indeed satisfied. Further- 
more, by non-dimensionalizing the continuity equation, then expanding the velocities 
and tho Jacobian in terms of€, it can be shown that Uz and E2 as given by (3.19) satisfy 
the O(c2) continuity equation. 

Having now completed the formulation of the problem and developed the system 
of equations describing the flow up to second order, with appropriate boundary 
conditions, the solutions can now be obtained in a very straightforward manner. 

The basic [i.e. O(l)]  flow is described by (3.2), (3.13) and (3.17). The solution is 

(3.20) 
found to be 

Using (3.5) for the pressure gradient, we see that 

aijF0/aq =u, = ko(t)[ i - i j2]- i .  

The pressure gradient is allowed to be a function of time and the solution is valid 
within the limits imposed by the non-dimensional quantities defined by (2.19). 
Denoting the period of the viscous wave as d2 /v  and the period of the travelling wave 

d 2 / v  as hlc, we require that 
- < 1 .  

Referring to (2.19), this is equivalent to ( d / h )  Re < 1 .  Since Re = O( 1)  and d/h = O(e) ,  
this allows slowing varying, or quasi-steady pressure gradients. Thus (3.20) becomes 

Go = ~RePo(1-7j2)-l .  (3.21) 

h/c 
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The non-dimensional flow rate 0 is given by 

*Go = $olll=l-Polll=o = -gPoRe-l .  

For Po 0, which corresponds to a zero imposed basic pressure gradient, the flow 
rate is Q = - 2  as expected. This is because the fl, 7, z system is translating to  the 
right ab non-dimensional velocity ii = - 1 and the non-dimensional channel width is 
a = 2. 

The first-order flow is described by (3.3) (where the right-hand side is zero for 
Po = 0) ,  (3.14) and (3.18). Again the solution is trivial and the result is 

- 
~ . , ( &  7, i) = k,(i) pj - ~ 7 7  - cos 277[+ c l ( f ) .  

The constant cl(i) is arbitrary, since it does not affect the solution for the velocity 
components, and is set equal to zero. Using (3.6), the relation for kl( t )  is seen to be 

P1 = - (2/Re) kl(% 
- 

yielding $l = - $Pl Re (7 - 3 7 3 )  - cos 2 4  (3.22) 

The parameter Pl corresponds to the pressure gradient due to unspecified end con- 
ditions and is not related to mass transport induced by the transverse travelling wave. 
Setting Pl = 0 implies that ul(c, 7 )  = 0 and El(c, 7) = 277 sin 2nc. 

The equation for El might appear incorrect since we expect a purely periodic 
component as with classical peristaltic pumping. In  effect, this is what exists with 
respect to the X ,  Y ,  2 sysbem. Referring to figure 1, it is seen that constant-[ planes 
deform periodically with period 277. When observed in the X ,  Y ,  Z system, or a 
reference frame fixed on the channel, we see a velocity which is periodic in X and 
varies as sinh y, which is consistent with a small amplitude solution by Wilson (1977) .  

The second-order solution is found by solving the system given by (3.4) for the 
stream function with (3.15) as the boundary conditions. Using the results for Po and 
Pl, this system becomes 

a4p2/aq4 = 0, 

ii,(f I )  = 2n2sin22n& G,(& I )  = 0. 

The general solution for ag2/a7 is 

a&/a?j = h& i) + h2(S, f) 7 +h,(C, i) 72 .  

Using (3.1 9 )  for ?i2 yields 
- 
u,(k, 7 ,  f) = h,(G f) + h,(%, 0 7 + h,(L f)72 

- (2772 sin2 277g - 4772 cos2 274 - (4772//3) 7 cos 2 7 4 .  

Applying the boundary conditions, the result is 

?i2(c, 7, f) = 2+( 1 - 72)  sin2 2n%+ k2(i)  ( I  - 7 2 ) .  (3.23) 

Applying (3.7) for the pressure gradient, this result can be rewritten as 

p2 = ( - 2 / ~ e )  [ + ( I  - cos 474) + k2( t ) ] .  (3.24) 

For the second-order solution we see that the pressure gradient is composed of two 
parts. As before in the lower-order terms, k, is related to the external imposed pressure 
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H ( X .  t )  = -d + a  cos 2zr ( X - c f )  + A  cos2 2. (X-c t )  x x 
FIGURE 2. Co-ordinate system for complex wave 

(bending plus area contraction). 

gradient. The - 2n2/Re contribution is due to the wall motion and produces a mean 
wall-induced flow O(e2). The average mean flow will be computed and discussed in the 
last section. At that stage we shall be able to contrast the results with the problem 
where a complex wall motion is allowed. 

4. Formulation of the complex wave problem 
The second part of the analysis involves a lateral bending wave with an accompany- 

ing area contraction proportional to the local curvature of the travelling wave. This 
occlusion or area contraction wave is a natural phenomenon resulting from local 
deformation and is a maximum at the amplitude peaks, zero midway between peaks 
and travels with bhe same wave speed as the bending wave. 

Two equivalent approaches to the problem are possible. One consists of developing 
new co-ordinate transformations in which constant-? surfaces coincide approximately 
with the boundaries of the system. The other approach, and the one followed here, 
uses the same co-ordinate transformations and specifies new boundary conditions. In  
this approach the boundary conditions are not applied on constant co-ordinabe lines, 
which is usually undesirable. However, because of the simple nature of the differential 
equations, this produces no difficulties and yields the most direct results. The co- 
ordinate systems for the model are shown in figure 2. The wall motion is now given by 

277 277 
A A 

I?(X,t) = + d + a c o s - ( X - ~ t ) T A ~ ~ ~ ~ - ( X - c t ) .  

In  the moving system we can specify this wall motion as 

A(x) = 5 d + a cos kx T A c0s2 kx. 

We shall adopt the hat notation, e.g. ,&(x), for the variables that have common 
symbols for the pure bending and complex wave solutions. 

The relevant co-ordinate transformations are given by (2.5) and (2.6). All that 
remains is to formulate the boundary conditions. The more direct approach, which 
began with (3.16), will be used with O(x) now written as &x). The boundary conditions 
then become A 

where (4.5) 

& I a s  = -ccose, elas = csin0, (4.31, (4.4) 

&x) = dt%/dx = - ak sin kx T 2Ak sin kx COB kx. 
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Substituting the expression for 6 ( x )  and using the non-dimensional variables defined 
by (2.19) yields 

(4.6) 

(4.7) 

a = - cos { - e2n sin 

0 = sin { - €277 sin 2n9 k ~6477 sin 2nccos 27rc} 

i e64n sin 2 4  cos 2 4 } ,  

applied a t  9 = _+ 1 T SPcos2 277[) where 6 = A/a  = O(1). 
Expanding 52 and 0 in an asymptotic series in E ,  expanding the right-hand sides of 

(4.6) and (4.7) in a Taylor series and collecting like powers of E yields the following 
equations up to  first order: 

a,( * N )  = - 1 )  8,( * N )  = 0, 

a,( N )  = 0, a,( k N )  = 2n sin 274 T 477 sin 274 cos 2n[, 

(4.8) 

(4.9) 

where for convenience N = 1 - 6P cos2 277c. Notice that the boundary conditions are 
essentially those given by (3.13) and (3.14). This is to  be expected since as s+O we 
require 6 = O(1) and the basic flow is identical. However, the transverse wall velocity 
will differ in the first-order solution by an additional component 4n sin 2nc cos 2n[, 
which can be thought of as a second-harmonic wave, where sin Bncrepresents the first- 
harmonic wave. 

5. Method of solution of complex wave problem 
The solution technique is identical to that for pure bending wave motion. The 

transformations and relevant equations of motion are identical, the only difference 
being the new set of boundary conditions. The system of equations to be solved for 

(4.10) 
the basic flow is 

a4pO/a;ij4 = 0, 

520(kN)=-1 ,  6 ( k N ) = O  (4.11) 

and the system for the first-order flow is 

(4.12) 

a , ( + N )  = 0, 8 , ( 4 N )  = 2nsin277~T4nsin27r~cos277~. (4.13), (4.14) 

Solving the equation for the basic flow yields 

(4.15) 

where to(t) is an arbitrary constant which is set equal to zero and ko(t) = - +Re Po. The 
equation for uo is 

52, = -P,Re [ 1 - ($)2] - 1 .  (4.16) 

If 6 is allowed to become zero then N = 1 and the result is the same as for the first 
problem. 

The solution to (4.12)-(4.14) for the first-order flow is found by integrating the 
stream-function equation and using the results for the basic flow; this yields 

2N 

$1 = OO(G Q + @l(C f) 5 + s2(& f) r2 + s3tg9 f) r3. 
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Applying the boundary conditions gives 
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(4.17) 

As before, cl(i) = 0.  Using the pressure-gradient relation given by (3.6) shows that 
k,(l) corresponds to the external imposed pressure gradient of first order, which is 
then assumed to be zero. Rewriting the cos2 277cterm, (4.17) becomes 

l+cos47r~] - [ --- li yy3] - 277 cos 277g. 
N 3 N  

The axial velocity then can be written as 

[ (31 a --[l+cos477g] 377 1 -  - , 
- 4N 

(4.18) 

where the pressure gradient is composed of a constant plus a periodic component 
given by 

This produces the interesting result that the pressure gradient induced by the wall 
motion and the resulting fluid transport is of first order in a lh ,  implying essentially 
an order-of-magnitude improvement in pumping. 

6. Discussion and summary 
The problem of peristaltic fluid motion induced by both pure and complex bending 

waves has been analysed using a perturbation analysis in terms of the parameter 
a/h .  The results are in general agreement with those of a small amplitude analysis 
(Wilson 1977) where a /d  = E ,  whereas in this problem a l d  = O(1). Specifically, the 
results demonstrate that the fluid transport is a second-order effect for a pure bending 
wave and that first-order effects exist for complex wave motion. 

It is interesting to note that the mean flow is independent of Re whereas for the 
small amplitude bending wave solution (Wilson 1977) it is a function of Re2. This is 
due to the assumptions of boundary-layer type with respect to the scaling of the 
length and velocity employed in this investigation. The problem then becomes 
similar to the streaming which occurs in oscillating boundary layers, which was dis- 
cussed by Lighthill (1953) and then by Lin (1956), where the mean flow is independent 
of Re but the streaming effect is dependent on viscosity. That is, an inviscid solution 
yields purely periodic behaviour up to second order. This type of behaviour is also 
referred to as acoustic streaming (Schlichting 1968, p. 414). 

Summarizing the complex wave solution, the interesting result of a first-order 
pumping was found to be induced by the wall motion for a fluid with no external 
pressure gradient. Noting that for this situation A / a  = O(1) and a/d = O(l ) ,  we see 
that A / d  = O( 1 )  and it is obvious that full occlusion of the channel is possible at the 
amplitude peaks of the lateral bending wave. Under this condition, a trapped bolus 
of fluid is simply transported downstream as the lateral bending wave propagates 
down the channel. Since the bending wave amplitude ratio a / h  is of first order, the 
mean fluid transport will also be of first order in a/h. 
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The magnitude of the space- and time-averaged axial velocity, denoted as [(%)I, 
can easily be obtained for both cases. Taking k, = 0 (i.e. no imposed pressure gradient 
up to second order), we find first for the pure bending wave that 

This can then be compared with the space- and time-averaged velocity for the complex 
wave : 

I ,  

where IN I = 1 - @'b = 1 - &A/a.  For this case, as the occlusion increases, i.e. I NI -+ Q, 
we find 

An exp*ssion can now he readily formulated for the effective pressure gradient 
generated by a lateral bending wave with an area contraction superimposed at the 
amplitude peaks. Recalling the definition of the non-dimensional pressure gradient 
Pl, the 'axial pressure gradient ' becomes 

Defining the increase in pressure per wavelength as 

we have 

A major difference in this peristaltic-pumping analysis, in addition to the fact that 
the travelling-wave wall motion is quite different from the classical sinusoidal area 
contraction-expansion wave, is that a first-order pumping effect can exist. Further- 
more, natural phenomena employing peristaltic pumping, such as occur in the human 
body, may use such first-order effects, as opposed to the usual second-order streaming. 
In this case complex wave forms other than the purely sinusoidal wave may exist. 
More probably, nonlinear interactions due to relaxation oscillations in the confining 
walls may exist. In  fact, observations of blood vessels indicate that a rapid contraction 
wave followed by a slow expansion wave actually exists. Consequently, a more 
reasonable mathematical model should include this nonlinear frequency effect. Here 
the method followed in this paper could be extremely powerful, since any wave form 
can be assumed and the corresponding transformations obtained. Then the vorticity 
equation can be mapped into the natural co-ordinate system, where the solution 
should be straightforward. The effect of these nonlinear relaxation oscillations will be 
the subjecO of a future investigation. 
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v = iie,+te, = 

Appendix 
It was necessary in the analysis to have relationships between the velocity com- 

ponents and the gradients of the stream function in the natural curvilinear co-ordinate 
system. These can be obtained in the following straightforward manner. 

Let f and g denote the equations of the stream surfaces. Then for an incompressible 
flow the velocity is given by 

The expression for the gradient in the natural co-ordinate system must be derived 
before proceeding. Consider a differential line ds in the 6 , ~  plane: 

v = V f x V g .  

( d ~ ) ~  = h,2(dr)2 + h,(dlJ2, 

where h, and h, are the scale factors, which are given by 

ec =, e, 

0 0 1 

J-*a$/ag J-ba$/ar a+/az . 

h, = [ ( $ ) 2 + ( $ ) 2 ] i ,  h, = [($)2+(2)2]4. 
For a conformal mapping, x5 = y, and x, = -ys. Thus 

Writing the expression for the gradient as 
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